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Considering the anharmonic phonon-phonon interactions, two-phonon resonances are studied

by Green’s-function methods.

The two-phonon spectrum exhibits an asymmetric peak near

the top of the two-phonon continuum. In the special case of a resonance consisting of two
acoustic phonons, the hybridization of the resonance with a single optical phonon is possible,

in agreement with experiment.

It has recently been proposed that the anhar-
monic phonon-phonon interaction can give rise to
two-phonon bound states which explain the anoma-
lous peak observed in the second-order Raman
spectrum of diamond. 3

The purpose of the present work is to show that
phonon-phonon interactions can have a striking
influence on the first-order as well as the second-
order spectrum. First we show that the second-
order spectrum is modified in an essential way
by the formation of two-phonon resonances under
quite general conditions, in contrast to the case
of two-phonon bound states which can occur only
for a limited range of anharmonic coupling. Fur-
thermore, we demonstrate that the first-order
spectrum may exhibit structure as a result of
hybridization of a two-phonon resonance with sin-
gle-phonon states.

We wish to relate our results to Raman scatter-
ing experiments and therefore consider only res-
onances with total momentum K=0.* In the case
of resonances consisting of optic-mode phonons
the momenta of the individual phonons k, and ka
obey the relation k1 = -kz 0. For resonances of
acoustic phonons, the 1nd1v1dua1 phonons have
wave vectors Kk;= —~k,=x !, where the ¥‘(i=1, 2,

..) refer to equivalent edges of the Brllloum
zone. In both cases the resonance is formed from
states near the top of the phonon band.

The Hamiltonian including third- and fourth~
order anharmonic terms can be written as JC

= 3Carmonte +3C3+3Cy, Where Syapmonte 1S the usual
phonon Hamiltonian in the harmonic approxima-
tion. The third-order term 3C; will contribute to
the finite lifetime of the single-phonon excitations.
We include these broadening effects for the single-
phonon states by means of a phenomenological
width I', which will be considered as a constant in
the energy range of interest.

Since the phonon energies of interest are much
greater than the thermal energies considered ex-
perimentally, we employ the Green’s-function
formalism for zero temperature. The effects of
finite temperature can then be included in the
phenomenological parameters which enter into the
calculation.

Following the usual notation, ® we introduce a
propagator for a single phonon

Dy(k, w)= tw®) (w - [w®) - 1ir] }?
—{(A)+ w(k)“ ¥ ]}-l)v (1)

where w(k) /s the single-phonon energy and T' is a
phenomenological width against decay into other
phonons, for example, the decay of a single optic
phonon into two acoustic phonons. The above
Green’s function is the Fourier transform of the
usual Green’s function in the coordinate repre-
sentation Dy(x,x")= —i{(T[d(x)p(x’)]), where T
denotes the time-ordering operator and the pho-
non field amplitudes® ¢ (x) are given by



oo

o) =(1/VV?) 2] [ w(®)/2]' /2

X(bieitﬁ-k-w(ﬁ)t]+b?{;e-itf~x-w(f{')t]) . (©

In Eq. (2) the crystal volume is denoted by V and
the phonon creation and destruction operators are
designated by b% and bg, respectively. Interms
of the ¢ amplitudes, a model Hamiltonian for two
interacting phonons can be written in the follow -
ing form®:

3= pw®) [bEog+1]
+(g/41V) [ ¢ (o (x)p ()¢ (x) @, . 3)

To investigate the nature of the two-phonon
states including anharmonic terms we consider
the Bethe-Salpeter equation for the two-phonon
Green’s function

Dy(x,x") = =i{T{p(x)p (X)p(x")p(x") }) ,

which is related to the strength of the Raman
scattering. The Bethe-Salpeter equation corre-
sponds to the summation of the diagrams shown
in Fig. 1(a), and is given by’

Dy(x,x") =i{2[ Dy (x, x')|?
+igy [ [D(x,x,) Dy, x")2dx, + (g -} . (4)

The solution of Eq. (4) for the case of total mo-
mentum K =0 is given by

Dy(K=0,w)=2F(w)/[1 -3¢, F(w)] , (5)
where F(w) is defined as
F(w)=[i/2n)"] [ d% [ @ D,(k, @ - &) Dy(~k, &) . (6)

In order to evaluate the integrals in Eq. (6), we
assume a parabolic dispersion law for the pho-
nons near the top of the phonon band. The corre-
sponding one-phonon density of states can be then
written in the simple form

py(w) = a(wy - w)! /2= a(w’)? for 0’ >0, (1)

where w; is the maximum single-phonon energy
and w’'=wy—w, In addition, we introduce a cutoff
energy A which corresponds to the single-phonon
bandwidth. Making use of Eqs. (1) and (7) we ob-
tain the F(w) defined by Eq. (6) in the form of a
simple integral:
A
F(w): %wg af dwl(wl)lla
0
1

g s ey AR ®)

X

where A= awiAY2 €= (w-2w,)/A, y=T/A, and
the dimensionless quantity f can be obtained by
numerical methods. In Eq. (8) we have restricted
our region of interest to energies near 2w, and
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FIG. 1. (a) Bethe-Salpeter equation for the two-
phonon propagator Dy; (b) Dyson equation for D{ in dia-
grammatic representation.

consequently consider only the first terms of the
phonon propagator defined in Eq. (1) and subse-
quently, in the amplitude of the phonon propagator,
we make the replacement w(ﬁ)Ewoo Finally, mak-
ing use of Eqs. (5) and (8), the two-phonon propa-
gator becomes

D,(K=0,w)= (/g f[1/g{ -1, (9)

where the dimensionless anharmonic coupling con-
stant is g} =2g,.

The two-phonon spectrum p, is related to the
propagator in Eq. (9) by

ps(K=0,w)= = 1/(rw2) ImD,(K=0,w) ,  (10)

where the factor wy? arises from the use of the
phonon field operators in the definition of the
Green’s function. In the limit g;=0, one obtains
the spectral density for two noninteracting pho-
nons as p§? = (@/4)(wy —w/2)!/2, for w <2w,; and
05 =0 for w>2w,. For the limiting case of T
=0, i.e., phonon states having infinite lifetime,
the function f can be calculated analytically for
all values of the coupling g; such a calculation®
shows that for g; < 1, a two-phonon resonance ex-
ists and the width of the peak corresponding to the
resonance becomes quite narrow as g} approaches
unity. For values g} >1 a two-phonon bound state
is formed. ' ® In the present paper we consider
phonons with a small but finite width I', and ar-
bitrary values of g;.

First we consider two-phonon resonances
(i.e., g1<1) and calculate the two-phonon spec-
trum numerically using Eqs. (8)-(10). The re-
sults of this calculation are presented in Fig. 2.
In the figure it is apparent that as g} approaches,
but remains less than unity, the spectrum exhibits
a sharp peak corresponding to a two-phonon res-
onance. As the value of the anharmonicity de-
creases, the peak, which is superimposed on the
continuum spectrum (dotted line), shifts in the di-
rection of decreasing energy and broadens sub-
stantially. Finally, as the anharmonic strength
g} tends to zero, the spectrum reduces to the non-

interacting-phonon density of states py” in agree-
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FIG. 2. Spectral function p, plotted as a function of
energy for different values of the anharmonic coupling
constant g4' . Solid curve for gj=1.1 shows a peak cor-
responding to a two~phonon bound state and the g5=0.9
line exhibits structure related to a resonance. For com-
parison the dotted line shows the phonon density of states
in the absence of phonon-phonon interactions.

ment with the analytic limit discussed previously.
If the anharmonicity is sufficiently large (i.e.,
g4>1), a two-phonon bound state splits off the top
of the two-p_l_lonon continuum and a sharp peak ap-
pears in p,(K=0, w) at an energy higher than twice
the maximum single-phonon energy in accord with
the results of Ref. 1. In the event that the single-
phonon width I' is much less than the separation in
energy of the peak from the top of the continuum,
the peak will be quite symmetric. However, as
the width becomes comparable in magnitude to the
above energy separation, the peak corresponding
to the bound state becomes very asymmetric as
shown in Fig. 2. It is gratifying to note that the
shape of the bound-state peak in Fig. 2 bears a
striking resemblance to the line shape of the
anomalous peak which has been observed in the
two-phonon Raman spectrum of diamond. 3
Recent experimental results for the Raman
spectrum of various crystals have exhibited in-
terference effects between one- and two-phonon
excitations.® Using the theoretical approach dis-
cussed above we can interpret these interference
effects in terms of the hybridization of single-
phonon states with a two-phonon resonance or
bound state, as the case may be. In particular,
the two-phonon resonance with total momentum
K=0 could be formed from two acoustic phonons
near the top of the acoustic spectrum and in spe-
cial cases (i.e., for certain temperatures) the

resonance energy can coincide with the energy of
a single optic-mode phonon whose momentum is
k=K. The hybridization is caused by the third-
order anharmonic terms in the Hamiltonian which
induce transitions from acoustic two-phonon states
to a single optic phonon.

In terms of our model Hamiltonian, the third-
order anharmonic terms can be expressed in the
form

30y =25/ [ $2(0)p* () (x)d® ,  (11)

where the superscripts “ac” and “op” designate
phonon field operators corresponding to acoustic
and optic modes, respectively, and g; is the third-
order coupling constant. To illustrate the forma-
tion of the hybrid states we consider the Green’s
function for an optic phonon;

DP(x,x") = =i(T{p>(x)9°*")}) . (12)

The third-order anharmonic terms in the Hamil-
tonian are responsible for the main contribution
to the single-phonon lifetime discussed previously.
Thus we can write the Dyson equation in terms of
the Green’s function D{? °*(x, x’) defined by Eq.
(1), with the w(k) replaced by the optical-phonon
energy w® taken at k=0, and the width I'=0.
Broadening of the single optic phonon due to the
JC; term will henceforth be taken into account ex-
plicitly.

Turning now to the acoustic-phonon resonance
we use the results of Egs. (1)=(10).'° Thus we
obtain the Dyson equation shown in diagramatic
form in Fig. 1(b), which has the formal solution in
the momentum representation

D§°) °”(E w)

1—g§D§°’°’(i§,w)D§°"‘°(k’zE,w) . (13)

DP(k, w)=

In Eq. (13) we again restrict our attention to en-
ergies near the resonance energy and use w
~w?~ 2w and then include for D{® °® only the
leading term in Eq. (1). Furthermore, we use
the propagator defined in Eq. (9) for D{® 2, As
in the derivation of Eq. (10), the spectrum for the
single optic phonon becomes

pP(K =0, w) = = 2(7wP) Im DP = ~ (1/7)

1
XIm |:w_w?,v[1+(g;)a(g£)_1f(1/gi 5] :l,

where we used Eqgs. (1), (9), (13), and defined a
dimensionless coupling constant (g4)?= 2)g2.

The spectrum p?® is plotted as a function of en-
ergy in Fig. 3, and exhibits in some cases two
peaks corresponding to (a) the optic phonon and
the two-acoustic-phonon resonance, respectively,
if they are well separated in energy, and (b) to the
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FIG. 3. Illustration of the hybridization of a two-
acoustic-phonon resonance with a single-optic-mode
phonon. Spectrum p® is shown as a function of energy
for various values of the renormalized (gj=0) optic pho-
non energy w{®. Arrows indicate the position of €
= (WP — 2035 /A;€4=—0.10, €5=-0.05, and €c=—0.01.

shifted energies of the mixed state (hybrid) in the
case of strong coupling. One can see in Fig. 3
that as w°® moves to the top of the acoustic-phonon
continuum the corresponding peak becomes quite
narrow; thus the optic phonon is less likely to de-
cay into two acoustic phonons since the density of
final states p{® ®° decreases. When the renormal-
ized optic energy is above the continuum, the ex-
citation becomes stabilized against decay and ex-
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hibits an extremely sharp peak [Fig. 3(c)]. In the
resonance region the hybrid peak corresponding
to the resonance is strongly deformed as in Fig.
3(b). It is worth noting that the optic peak is usu-
ally shifted more than the resonance. Calculated
curves of p}® for various values of g§ show that the
relative intensities of the above peaks are deter-
mined by g3 as follows: (a) for g§<<0.2, the optic
mode dominates the spectrum; (b) for g5~0.2,
the two peaks have approximately the same weight;
(c) for g5>>0.2 (i.e., large-coupling limit), the
optic peak disappears.

The spectrum p}® would show up in first-order
Raman scattering; thus the appearance and be-
havior of the double peaks observed in Scott’s'®
experiments on quartz are compatible with the
present theory. Neutron scattering experiments
should also be able to resolve the structure in p3®.

In the second-order Raman spectrum the struc-
ture due to the renormalized p3° would appear as
well and would exhibit peaks at somewhat shifted
energies. Hybridization of phonon states in the
above manner thus suggests the existence of an in-
terference term between first- and second-order
processes which is superimposed on the first- and

second-order Raman spectra.

The present formalism can readily be extended
to treat several phonon branches as well. In this
case structure in the phonon dispersion relations
could result in additional structure in the spec-
trum,

It is a pleasure to acknowledge stimulating dis-
cussions with Professor V. Celli, Professor
M.H. Cohen, and Dr. J. Scott.

*Research supported in part by the Center for Ad-
vanced Studies at the University of Virginia, Char-
lottesville, Va. 22903.

TPermanent address: Central Research Institute for
Physics, Budapest, Hungary.

IM. H. Cohen and J. Ruvalds, Phys. Rev. Letters 23,
1378 (1969).

?R. S. Krishnan, Proc. Indian Acad. Sci. 24, 25 (1946).

33, Solin and A. K. Ramdas, Phys. Rev. B 1, 1687
(1970).

‘Resonances with small total momentum K~ 0 also
exist and can be treated by an extension of the present
work.

5A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshin-
ski, Methods of Quantum Field Theovy in Statistical
Physics (Prentice-Hall, Englewood Cliffs, N.J., 1963).

®Formally, the general expression for the phonon-
phonon interaction is given as [see, for example, G.
Leibfried and W. Ludwig, Solid State Phys. 12, 276
(1961)]

- -

- By,
3= Th (1/N)Zq>3132S3S4ak1$1ak282ak383“f4s4 ,

where the summation is over EIEZESKA $15953S4, and where
the ai’s are related in a simple manner to the phonon
operators ap = [r/20 (k)12 (b}s +bz). Near the top of
the two-phonon continuum, in a small region of the
Brillouin zone, it is a reasonable approximation to write
the Hamiltonian in the form shown in Eq. (4) and neglect
the # dependence of the anharmonic coupling coefficient
g4. This coefficient can be related to the crystal force
constants implicit in ® by straightforward substitution
of the field operators ¢(x) into Eq. (4) to obtain the cor-
responding expression for ¥¢. For the sake of simplicity
we consider only a single branch of the phonon spectrum.

"The factor of 2 in Eq. (6) is due to the possible pair-
ings of the field operators ¢ (x).

8M. H. Cohen, J. Ruvalds, and A. Zawadowski (un-
published).

%See, for example, J. F. Scott, Phys. Rev. Letters
21, 907 (1968), and references cited therein.

0The effect of the 3¢ terms on D3° is to change the
coupling constant g,. This contribution is proportional
to gza and can be included by the renormalization of g.



